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Abstract

We consider the calculation of the band structure and Bloch mode basis of two-dimensional photonic crystals, modelled
as stacks of one-dimensional diffraction gratings. The scattering properties of each grating are calculated using an efficient
finite element method (FEM) and allow the complete mode structure to be derived from a transfer matrix method. A range
of numerical examples showing the accuracy, flexibility and utility of the method is presented.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Over the past decade, photonic crystals (PC) have emerged as one of the most active areas of contemporary
optics research, due largely to their unique intrinsic properties which allow for substantial control over the
flow of light and which, in turn, open up the potential for miniaturised devices embedded in compact, inte-
grated optical circuits. In such ‘‘photonic chips’’, different components may be connected using complicated
‘‘wiring’’ networks comprising waveguides with bends [41], Y- [4] and T-junctions [20], channel drop filters
[21], couplers [5,42], superprisms [28], Mach-Zehnder interferometers [32] and so on. The modelling of such
structures is theoretically and computationally challenging because of their geometrical complexity, the strong
scattering environment associated with both the wavelength scale of the structure and the (often) high index
contrast of the constituent materials. Accordingly, the development of efficient, accurate and robust numerical
tools is an important aspect of photonic crystal research.

In this paper, we consider two-dimensional rod-type and hole-type photonic crystals, with the analysis
that is presented being easily extended to handle 2.5 D systems (in which fields are three-dimensional in
nature, but the geometry is two-dimensional, as in an optical fibre). The mathematical formulation is based
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on the theory of Bloch modes and the solution of eigenvalue problems. For problems modelled in the fre-
quency domain, there are two basic solution approaches depending on how the unknown eigenvalue param-
eter is chosen. Either the Bloch wave vector k0 can be fixed, in which case the frequency x is the eigenvalue,
or alternatively, x and one (or two, in the case of 3D photonic crystals) components of k0 can be chosen,
with the other remaining Bloch vector component becoming the unknown eigenvalue. The analysis of the
Bloch modes when the Bloch wave vector k0 is given and the frequency x is unknown leads to Hermitian
eigenproblems which can be efficiently solved using various existing computational methods, such as plane
wave expansion techniques [26,27] and finite element methods [2,15]. Such an approach, however, becomes
difficult to use for dispersive media, in which the dielectric constant depends on the frequency (which is the
eigenvalue). In contrast, methods which first fix the frequency (e.g. [34]) can easily handle dispersive medium
problems and can also be used to efficiently analyse many other physically relevant applications where the
frequency is given.

In this paper we concern ourselves with the spectral problem where the values of the frequency x and one of
the two components of k0 = (a0,b0), a0 for instance, are fixed. However, the resulting eigenvalue problem is
nonlinear and even for lossless media and real values of a0, complex valued eigenvalues b0 can occur, corre-
sponding to the evanescent modes. Because of the nonlinearity, the direct application of standard numerical
solution techniques for eigenproblems is difficult and computationally expensive. These problems can be cir-
cumvented, however, by using the transfer matrix formalism [7,34] to revert the computational solution to one
of a standard algebraic eigenvalue problem. In this approach, an infinite two-dimensional photonic crystal is
modelled as a periodic stack of grating layers. The transfer matrix relates the fields above and below the grat-
ing, and by applying the Bloch condition, the eigenvalues of the transfer matrix appear in the form of expo-
nentials involving the components of the Bloch vector.

The transfer matrix is typically a dense matrix of low dimension and the numerical calculation of its eigen-
values is computationally inexpensive, although the construction of the transfer matrix itself may be compu-
tationally expensive. In order to benefit from the numerous techniques available in the literature on scattering
by diffraction gratings [35], it is useful to formulate the transfer matrix eigenproblem using grating scattering
matrices [7,23,39] which relate the output (reflected and transmitted) plane wave amplitudes to the incident
field amplitudes.

Scattering matrices may be generated using a variety of techniques and, indeed, our group has extensive
experience in the use of the multipole method [8]. While the multipole method has proven to be an effective
tool for modelling PC structures composed of cylinder gratings, it has a number of limitations, the most obvi-
ous of which is the restriction on the range of geometries that can be accommodated. This method also has
limitations when dealing with cylinder gratings that overlap or interpenetrate to any significant extent. While
a hybrid multipole-plane wave method [8] can handle modest interpenetration of cylinder layers, the method
breaks down when the interpenetration exceeds some threshold, a phenomenon which is directly related to the
Rayleigh controversy (see, for example, Ref. [35, Chapter 1]) concerning the validity of plane wave expansions
for representing outgoing fields within the grooves of diffraction gratings. The combination of these issues has
thus led us to develop a general technique based on the finite element method – one that is able to accommo-
date a wide class of geometries and which overcomes the shortcomings of the multipole method. Accordingly,
this paper outlines a finite element approach to generating scattering matrices and goes on to explore the use
of this in the context of the transfer matrix method and applications that are of interest in the study of pho-
tonic crystal devices.

Since construction of the scattering matrices involves the solution of a grating diffraction problem (through
the solution of Maxwell’s equations) for each diffraction order used in the plane wave (Rayleigh) expansion,
their calculation dominates the computational effort involved in calculating the Bloch modes of the structure.
As we will see, however, the process is made efficient by observing that the solution of each of these diffraction
problems (which generates a particular column of the scattering matrix) involves the calculation and LU fac-
torisation of only one finite element matrix. By taking into account the particular structure of the discretised
system, we also significantly reduce the computational cost of building the right hand side of the final matrix
system. Thus, the scattering matrices can be calculated reasonably quickly.

In what follows, we contextualise the scattering matrices by outlining the transfer matrix method for gen-
erating the Bloch modes of the photonic crystal. We then proceed to develop the weak formulation of the
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problem in Section 3 and describe the FEM discretisation of the variational problem in Section 4. In Section 5,
we apply these tools, considering the convergence properties of the FEM, the symmetry properties of the
eigenvalue distribution, and the photonic crystal band diagrams. We also propose an approach to treat a pho-
tonic crystal with a perfectly conducting metallic inclusions when the grating layer interfaces intersect the
inclusions. Finally to illustrate how our approach can be applied to a finite size photonic crystal, we analyse
the optimisation of taper shapes for efficient coupling of light from a photonic crystal waveguide to free space
(with details of the algorithm given in Appendix A).

2. The eigenvalue problem

We assume that the dielectric constant e is invariant with respect to the variable z (the axis of the grating
inclusions) and is periodic in the (x,y)-plane with respect to a lattice [1,37]
L ¼ fme1 þ ne2; m; n 2 Zg; ð1Þ

where e1 2 R2 and e2 2 R2 are the basis vectors of the lattice. The reciprocal lattice corresponding to L is de-
fined by
R ¼ fmu1 þ nu2; m; n 2 Zg; ð2Þ

where the basis vectors u1; u2 2 R2 are defined such that ui Æ ej = 2pdi j "i,j 2 {1,2} (di j is the Kronecker sym-
bol, i.e., di j = 1 if i = j and dij = 0 otherwise).

The analysis of waves propagating along the (x,y)-plane can be carried out by decomposing the electromag-
netic field into two polarisations: transverse magnetic (TM) (E = (0,0,Ez), H = (Hx,Hy, 0)) and transverse
electric (TE) (E = (Ex,Ey, 0), H = (0, 0,Hz)). The field components v = Ez and v = Hz are chosen as the
unknowns for, respectively, the TM and TE polarisations.

From Maxwell’s equations in the frequency domain, the field v must satisfy the Helmholtz equation
r � ðprvðrÞÞ þ k2qvðrÞ ¼ 0 in R2; ð3Þ

where r = (x,y) denotes the position vector, k is the free space wavenumber, p = 1, q = e and v = Ez in the case
of TM polarisation, and p = 1/e, q = 1 and v = Hz for TE polarisation.

If d1 and d2 denote, respectively, the lengths of the vectors e1 and e2, we assume that the coordinate system
is chosen such that
e1 ¼ d1ð1; 0Þ and e2 ¼ d2ðcos w; sin wÞ ð4Þ

with w, the angle between the lattice vectors defined in Fig. 1.

Accordingly, for a square lattice, we have d1 = d2 = d and w = p/2, while for a hexagonal lattice d1 = d2 = d

and w = p/3, where d is the lattice constant, i.e., the smallest distance between the lattice points.
The Bloch mode [1,18,37,38] v(r) associated with the Bloch wave vector k0 2 R2 is a nonzero solution of Eq.

(3) which, according to the Bloch theorem, is the product of the exponential function eik0�r and a function u(r)
which is periodic on the lattice L.

In the case of the TM formulation (v = Ez), the substitution vðrÞ ¼ eik0�ruðrÞ into (3) gives the following par-
tial differential equation spectral problem:
�r � ðruÞ � 2ik0 � ruþ ðk0 � k0Þu ¼ k2qu: ð5Þ

When, in Eq. (5), we fix the wave vector k0 and solve for the light frequency, we are led to a linear Hermitian
eigenproblem having k2 as the unknown [2,27]. However, when the wavenumber k and one of the two com-
ponents of
k0 ¼ ða0; b0Þ; ð6Þ
a0 for instance, are fixed, the resulting eigenproblem is nonlinear since it involves both b0 and b2
0. Correspond-

ing observations also apply to the TE problem with v = Hz.
Instead, we consider an alternative method, fixing k and a0, and derive a transfer matrix formulation which

results in a simple, algebraic eigenproblem for the eigenfunction v(r) which satisfies the Bloch condition
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Fig. 1. (a) Geometry of the photonic crystal unit cell, defined by the lattice basis vectors e1 and e2. The phase origins P and P 0 of the fields
respectively above (f�, f+) and below (f 0�, f 0+) the grating are shown. (b) The geometry of a supercell model of a photonic crystal with line
defects. The horizontal lines bound a single grating layer of the bulk crystal.
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vðrþ rmnÞ ¼ vðrÞeik0�rmn 8r 2 R2 ð7Þ

where rmn = me1 + ne2, for m; n 2 Z, is a general lattice vector.

Let X denote, for example, the following layer of the two-dimensional photonic crystal:
X ¼ t1e1 þ t2e2jt1 2 R; t2 2 �
1

2
;
1

2

� �� �
ð8Þ
and, let P and P 0 represent, respectively, the top and bottom interfaces of X (see Fig. 1), i.e.,
P ¼ ft1e1 þ
1

2
e2jt1 2 Rg and P0 ¼ t1e1 �

1

2
e2jt1 2 R

� �
: ð9Þ
The symbols X0 and X00 will represent, respectively, the semi-infinite spaces above and below X. From Eqs. (4)
and (7), v(x,y) is quasi-periodic with respect to the variable x:
vðxþ d1; yÞ ¼ vðx; yÞeia0d1 8x; y 2 R: ð10Þ

We now conceptualise the photonic crystal layer X as a diffraction grating surrounded by a homogeneous

medium. The quasi-periodicity imposed by the grating and the incident field leads us to the basis of plane
waves
feiðamx�vmyÞg; ð11Þ

where 8m 2 Z
am ¼ a0 þ
2pm
d1

;

vm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0kÞ2 � a2

m

q
if ðn0kÞ2 � a2

m P 0;

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

m � ðn0kÞ2
q

if ðn0kÞ2 � a2
m < 0;

8><>:
ð12Þ
with n0 denoting the refractive index of the homogeneous medium surrounding X. We assume that the homo-
geneous medium is a lossless dielectric material so that n0 is a real and positive number. The fields at the upper
interface P and lower interface P 0 of X may be represented, respectively, by plane wave expansions v̂ and v̂0 as
follows [35]:
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v̂ ¼
Xþ1

m¼�1
v�

1
2

m f �m e�ivmðy�y0Þ þ f þm eivmðy�y0Þ
� �

eiamðx�x0Þ;

v̂0 ¼
Xþ1

m¼�1
v�

1
2

m f 0�m e�ivmðy�y0
0
Þ þ f 0þm eivmðy�y0

0
Þ� �

eiamðx�x0
0
Þ;

ð13Þ
where (x0,y0) 2 P and ðx00; y00Þ 2 P0 are the chosen phase origins, i.e., the points P and P
0
of Fig. 1. For exam-

ple, when the photonic crystal comprises periodic cylindrical inclusions in an otherwise uniform background
medium, we may take n0 as the refractive index of the background medium. We also assume that the wave-
length does not coincide with a Rayleigh anomaly (also commonly referred as Wood anomaly in the diffrac-
tion grating literature) and which occurs at a wavelength for which vm = 0 for some integer m, corresponding
to the transition of order m from a propagating wave to one that is evanescent.

In Eq. (13), the factor v�1=2
m is chosen to normalise the plane wave amplitudes f �m and f 0�m so that energy

fluxes may be computed from the square magnitude of the relevant complex amplitudes [8,9]. Note that
although the variable y in the plane wave expansion (13) does not play any role in the representation of
the field v at the interfaces P and P 0 of X, the y dependence will be required to enforce the continuity of
the tangential field components through derivative conditions across these interfaces.

Although our approach is carried out within the framework of diffraction theory, it is important to point
out that in the actual photonic crystal the plane wave expansion (13) is, by construction, valid at the interfaces
P and P 0 but its validity beyond these interfaces requires a uniform layer and this requirement had lead to
serious limitations on the multipole method. However, since our method needs only the expansion at the inter-
faces, it can be applied to a general and arbitrary photonic crystal geometry.

If we denote by f�, f+, f 0� and f 0+ column vectors whose elements are the plane wave expansion coefficients
f �m , f þm , f 0�m and f 0þm , respectively, and if we assume that the phase origins (x0,y0) 2 P and ðx00; y00Þ 2 P0 are such
that
ðx00; y00Þ ¼ ðx0; y0Þ � e2; ð14Þ

then the Bloch condition (7) gives
f 0� ¼ lf�; f 0þ ¼ lfþ; ð15Þ

where the phase factor l is given by
l ¼ e�ik0�e2 : ð16Þ

The set of eigenvalues and eigenvectors of Eq. (15) can be partitioned into two blocks, respectively, the down-
ward and upward propagating modes [7]. The propagating modes have eigenvalues of unit magnitude |l| = 1
and the partitioning is done according to the direction of field energy flow, while the evanescent modes are
characterised by |l| 6¼ 1 and are classified according to the direction of decay of the field, i.e., the downward
and upward directions are associated, respectively, with |l| < 1 and |l| > 1.

The transfer matrix T relates the fields above and below the grating as follows:
f 0�

f 0þ

� �
¼T

f�

fþ

� �
: ð17Þ
Thus the Bloch factors l ¼ e�ik0�e2 can be obtained as eigenvalues of the transfer matrix T.
In order to benefit from the numerous techniques available in the literature on scattering by diffraction grat-

ings [35], we need to formulate the eigenvalue problem using grating scattering matrices [7,23,39]. Thus we
introduce the plane wave reflection and transmission scattering matrices of the grating as R, T and R 0, T 0, with
the two pairs corresponding to incidence from above and below, respectively. For example, Rmn denotes the
reflected amplitude in the plane wave order m due to the incidence on the top interface of the grating by a unit
amplitude plane wave in order n (associated with a direction angle hn derived from the grating equation
sinhn = an/(n0k)). Note that these scattering matrices, the form of which are derived in Section 3 are of infinite
dimension and must be truncated in order to apply the numerical procedures.

The grating scattering matrices can be computed using a variety of numerical techniques for diffraction
grating problems such as integral and differential methods [35], and multipole methods [6,8,9] which are
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appropriate to cylinder gratings. Here, however, we use the finite element method [13,14,17] to derive an effi-
cient and accurate tool that provides the flexibility needed to model arbitrary geometries. As we will see,
although the calculation of these matrices involves the solution of multiple grating scattering problems (over
the set of incident plane wave orders), we may arrange the FEM algorithm in such a way that the most com-
putationally expensive step, associated with the factorisation of FEM matrices, never needs to be repeated.

The grating scattering matrices relate the incoming fields f�, f 0+ to the outgoing fields f+, f 0� as follows:
f 0�

fþ

� �
¼

T R0

R T0

� �
f�

f 0þ

� �
: ð18Þ
Rearranging the equation defined in Eq. (18) we have
I �R0

0 T0

� �
f 0�

f 0þ

� �
¼

T 0

�R I

� �
f�

fþ

� �
; ð19Þ
where I is the identity matrix. Thus the transfer matrix T is given by
T ¼
I �R0

0 T0

� ��1
T 0

�R I

� �
¼ T� R0T0�1R R0T0�1

�T0�1R T0�1

" #
: ð20Þ
The matrices T and T 0 are typically ill-conditioned because of the exponential increase or decrease of the eva-
nescent wave components, and so the inversion of the transmission matrices T 0 in Eq. (20) is quite problem-
atic. It has therefore been necessary to reformulate the eigenproblem in a way that circumvents these
instabilities. To do so, we use Eq. (20) to recast the eigenproblem Tf ¼ lf as
T 0

�R I

� �
f�

fþ

� �
¼ l

I �R0

0 T0

� �
f�

fþ

� �
ð21Þ
and then apply a shift-and-invert technique to derive the standard linear eigenvalue problem
T� sI sR0

�R I� sT0

� ��1
I �R0

0 T0

� �
f�

fþ

� �
¼ 1

l� s

f�

fþ

� �
: ð22Þ
In our numerical simulations, for example, we set the value of the shift to s = 1 or s = 2 and solve Eq. (22)
using standard numerical codes such as the LAPACK library [30] or Mathematica [43]. In passing, we observe
that the numerical stability of the generalised eigenvalue problem (21) has also been considered by various
authors [11,31]; other numerically stable approaches have also been published, see for instance [25].

The diagonalised form of the transfer matrix then follows from the eigensystem:
T ¼FLF�1; where F ¼ F� eF�
Fþ eFþ
" #

and L ¼
K 0

0 eK
� �

: ð23Þ
In Eq. (23), the columns of the matrix F comprise the eigenvectors which constitute the Bloch modes. Its
left partition contains the downward propagating modes, with the columns of the constituent matrices F�
and F+, respectively, contain the downward and upward plane wave components f� and f+ of the modes of
Eq. (15). Correspondingly, the right partition (with quantities distinguished by a tilde symbole) contains the
upward propagating modes. In turn, the diagonal matrix L comprises the eigenvalues l, partitioned into
downward (K) and upward propagating (eK) modes. As is detailed in Ref. [10], we choose to normalise
the Bloch mode matrix F so that propagating modes carry unit energy, thus reducing the subsequent cal-
culation of energy fluxes to the computation of the square magnitude of the relevant coefficient in the Bloch
mode expansion.

To conclude this section, we focus briefly on some properties of transfer matrices and the concomitant,
interesting properties that manifest themselves in the distribution of the eigenvalues l which are taken up
in Section 5.2. Before doing so, however, it is important to differentiate between the transfer matrix method
which is adopted here, and the more familiar treatment adopted by plane wave expansion methods that solve
an operator eigenvalue problem [26] of the form
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HHðrÞ ¼ r � 1

eðrÞr �HðrÞ
	 


¼ k2HðrÞ: ð24Þ
In computing the Bloch modes from Eq. (24), the eigenvalues (k2) of which determine the permissible frequen-
cies, we select a Bloch vector k0 and then determine a basis of modes (of different frequencies), the orthogo-
nality of which follows from the Hermitian nature of the operator H. In contrast, in the treatment of this
paper, we select a frequency (or wavelength) and a component of the Bloch vector and proceed to solve
the eigenvalue problem
Tf ¼ lf ð25Þ

to determine the remaining Bloch factor(s) (via l) and an eigenvector f which characterises the mode. This set of
modes is complete and forms a basis in which we can expand electromagnetic fields for the particular frequency.
However, the orthogonality properties of the modes are completely different to those derived from the conven-
tional operator eigenvalue treatment [26] and must be deduced from the properties of the transfer matrix T.

There are two key results. The first of these is that, for a0 = 0, the transfer matrix is symplectic [10], i.e.,
TT QpwT ¼ Qpw where Qpw ¼
0 Q

�Q 0

	 

; ð26Þ
where Q is the reversing permutation, derived by inverting the rows of the identity matrix. The derivation of
Eq. (26) for an arbitrary non-symmetric crystal follows from the reciprocity theorem, with the origin of the
skew-Hermitian form of Qpw lying in the curl operators of Maxwell’s equations. Since its derivation is entirely
geometrical in nature, relying only on the reciprocity theorem, it holds for arbitrary materials and thus is
applicable to both dielectric and metallic (lossy) structures. It may further be shown that the modes, repre-
sented by the columns of the matrix F (23), satisfy
FHQpwF ¼
0 I

�I 0

	 

; ð27Þ
when appropriately normalised.
The second key relation constitutes a generalisation [10] of unitarity, with the generalisation taking into

account the need for evanescent plane waves in addition to propagating plane waves. That is,
THIpwT ¼ Ipw where Ipw ¼
Ip �iI�p

iI�p �Ip

	 

; ð28Þ
in which Ip denotes a diagonal matrix whose rows and columns designate the plane wave orders and whose
diagonal elements are 1 for propagating plane waves and 0 otherwise. The matrix I�p ¼ I� Ip is its comple-
ment, containing unit diagonal elements only for the evanescent plane waves. From this, one may derive a
modal orthogonality relation
FHIpwF ¼ Ibm where
Im �iI�m

iI�m �Im

	 

; ð29Þ
in which Im and I�m denote the Bloch mode analogues of the corresponding plane wave forms Ip and I�p, and
have unit diagonal entries denoting the place of propagating and evanescent Bloch modes. The derivation
of Eq. (28) follows from an energy argument and thus Eqs. (28) and (29) hold only for lossless systems but
are valid for arbitrary values of a0 2 R.
3. Variational formulation of the grating scattering problem

3.1. Overview and nomenclature

Although in the case of a photonic crystal layer X we take the semi-infinite homogeneous media above and
below to be identical, we will derive the finite element scattering matrix algorithm for the general case in which
the refractive indices of the media above and below differ (with a superscripted prime ( 0) referring to quantities
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associated with the homogeneous medium below the grating). Also, to simplify the presentation of the FEM,
we will solve the grating scattering problem using unscaled plane wave coefficients, i.e., without the scaling
factors v�1=2

m that appears in Eq. (13), and then rescale the coefficients to introduce the energy normalisation
at the conclusion of the derivation.

For a given value of a0 2 R and for an arbitrary order m 2 Z, the plane wave parameters am, vm and v0m are
defined by Eq. (11); for v0m, the refractive index value n0 is replaced by n00 in Eq. (11). The reflection and trans-
mission scattering matrices that characterise the diffraction properties of the grating will be filled column-wise,
with each column corresponding to a particular incidence order. The scattering matrices can be determined by
computing, for each incident order n (including evanescent orders) from both above (exp[ian(x � x0) �
ivn(y � y0)]) and below (exp½ianðx� x00Þ þ iv0nðy � y00Þ�), the reflected and transmitted amplitudes of the outgo-
ing plane wave fields.

For example, if the downward propagating plane wave
vinc
n ¼ eianðx�x0Þ�ivnðy�y0Þ ð30Þ
is incident from above the grating, the total field propagating over the semi-infinite domains X0 and X00 can be
represented, respectively, by the following plane wave expansions:
vþn ðx; yÞ ¼
Xþ1

m¼�1
dmne�ivmðy�y0Þ þ rmneivmðy�y0Þ
� �

eiamðx�x0Þ;

v�n ðx; yÞ ¼
Xþ1

m¼�1
tmneiðamðx�x0

0
Þ�v0mðy�y0

0
ÞÞ;

ð31Þ
where rmn and tmn are, respectively, the coefficients of the outgoing reflected and transmitted plane wave coef-
ficients, and dmn denotes the Kronecker symbol.

Similarly, for incidence from below the grating, we have
v0inc
n ¼ eianðx�x0

0
Þþiv0nðy�y0

0
Þ ð32Þ
and also the plane wave expansions denoting the field above and below:
v0þn ðx; yÞ ¼
Xþ1

m¼�1
t0mneiðamðx�x0Þþvmðy�y0ÞÞ;

v0�n ðx; yÞ ¼
Xþ1

m¼�1
dmneiv0mðy�y0

0
Þ þ r0mne�iv0mðy�y0

0
Þ� �

eiamðx�x0
0
Þ:

ð33Þ
3.2. Plane wave incidence from above the grating: variational formulation

From the periodicity of the structure and from the quasi-periodicity of the incident plane wave, the solution
vn has to be quasi-periodic :
vnðxþ d1; yÞ ¼ eia0d1 vnðx; yÞ 8ðx; yÞ 2 X: ð34Þ

Inside the grating area X, the field must satisfy the Helmholtz equation
r � ðprvnÞ þ k2qvn ¼ 0: ð35Þ

The continuity of the tangential components of the electric and magnetic fields across the interfaces P and P 0

implies that vn and p(ovn/om) must be continuous. Accordingly, from Eq. (31), the field and derivative bound-
ary conditions are:
vnðx; y0Þ ¼ wnðxÞ þ
Xþ1

m¼�1
rmnwmðxÞ on P;

vnðx; y00Þ ¼
Xþ1

m¼�1
tmnw

ð0Þ
m ðxÞ on P0;

ð36Þ
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and Xþ1

p
ovnðx; y0Þ

om
¼ �ip0vnwnðxÞ þ ip0

m¼�1
vmrmnwmðxÞ on P;

p
ovnðx; y 00Þ

om
¼ ip00

Xþ1
m¼�1

v0mtmnw
ð0Þ
m ðxÞ on P0;

ð37Þ
where
wmðxÞ ¼ eiamðx�x0Þ and wð0Þm ðxÞ ¼ eiamðx�x0
0
Þ 8x 2 R; ð38Þ
and where p0 and p00 are the constant values of the function p over X0 and X00, respectively, with the operator
o/om denoting the outward normal derivative.

To obtain the variational formulation of the problem (35)–(37), we must first introduce the Sobolev space
of quasi-periodic functions H 1

ða0ÞðXÞ, defined as the closure of the set of smooth functions
C1ða0Þð�XÞ ¼ fv 2 C1ð�XÞjvðxþ d1; yÞ ¼ eia0d1 vðx; yÞ 8ðx; yÞ 2 Xg ð39Þ
with respect to the norm i Æ i1,Q of the Sobolev space H1(Q) where Q is a unit cell of the x-periodic domain X.
For example, Q can be chosen as in Fig. 1. For the remainder of the paper, we shall regard the domain X as the
unit cell Q with quasi-periodic boundary conditions.

The variational formulation is obtained in two steps. First we multiply Eq. (35) by the conjugate of test
functions w 2 H 1

ða0ÞðXÞ and integrate by parts, taking into account the boundary conditions (37) and the
quasi-periodicity. Then we multiply Eq. (36) by plane wave exponential functions w�mðxÞ or wð0Þm

�ðxÞ, and apply
their orthogonality. This leads to the following weak formulation :

Given n 2 Z, find the field vn 2 H 1
ða0ÞðXÞ, and plane wave coefficients rmn and tmn, for m 2 Z, such that
Z

X
ð�pðrvnÞ � ðrw�Þ þ k2qvnw�Þ dx dy þ ip0

Xþ1
m¼�1

vmrmn

Z x0þd1=2

x0�d1=2

wmðxÞw�ðx; y0Þ dx

� ip00
Xþ1

m¼�1
v0mtmn

Z x0
0
þd1=2

x0
0
�d1=2

wð0Þm ðxÞw�ðx; y00Þ dx

¼ ip0vn

Z x0þd1=2

x0�d1=2

wnðxÞw�ðx; y0Þ dx 8w 2 H 1
ða0ÞðXÞ;

d1rmn �
Z x0þd1=2

x0�d1=2

vnðx; y0Þw�mðxÞ dx ¼ �d1dm;n 8m 2 Z;

d1tmn �
Z x0

0
þd1=2

x0
0
�d1=2

vnðx; y 00Þw
ð0Þ
m

�ðxÞ dx ¼ 0 8m 2 Z;

ð40Þ
where * denotes the complex-conjugate operator.
The theoretical analysis of variational problem (40) has been the subject of many papers, e.g., Refs. [3,19].

For all but possibly a discrete set of frequencies, the existence and uniqueness of a solution of Eq. (40) has
been proved and the convergence of the finite element solution has been established [3,19]. In most of the ana-
lytical studies, which use a nonlocal boundary operator (Dirichlet-to-Neumann map), Eq. (40) is further trans-
formed into a more compact form where the theory of elliptic boundary value problems may be applied.
However in order to avoid a significant loss of sparsity in the FEM matrices, it is appropriate to discretise
directly Eq. (40).

We also consider the case of incidence from below, with the details differing from Eq. (40) only by the fact
the incident source terms and the reflection matrix coefficients r0mn are attached the lower interface while the
transmission matrix coefficients t0mn appear on the upper interface.

4. Finite element computation of the grating scattering matrices

We use a standard quadratic finite element method to construct an approximating finite dimensional sub-
space Vh of the space H 1

ða0ÞðXÞ. More details concerning the finite element procedures can be found in Ref. [12].
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The parameter h refers to the maximum diameter of the triangles in the finite element mesh associated with Vh.
The grating unit cell is represented by an x-periodic triangular FEM mesh. Here Nh refers to the dimension of
the FEM space Vh and f/mg

Nh
m¼1 is the nodal basis of the subspace Vh. The quasi-periodicity condition must be

enforced on the basis functions associated with nodes lying on the left and the right periodic boundaries of the
FEM mesh; the other functions are zero on these boundaries thus are not affected by the quasi-periodic
boundary condition. The approximate solution vnh is expanded in terms of the basis functions as
vnh ¼
XNh

m¼1

vnm/m: ð41Þ
To obtain a numerical solution, we truncate the plane wave expansion to a finite number of plane wave
orders m 2 [�N,N], where the integer truncation parameter N is chosen to be sufficient to ensure the accuracy
of the computed solution. N is usually chosen such that the truncated Rayleigh expansion includes all the
propagating orders and a number of evanescent diffraction orders, sufficient to ensure that the high frequency
components of the field are suitably accommodated. In our calculations, we include those evanescent waves
that do not increase or decrease by more than a factor of � > 0 across the grating thickness, i.e.,
expð�jvnjðy0 � y00ÞÞ > � or expð�jv0njðy0 � y 00ÞÞ > �: ð42Þ

For the examples we consider in this paper, we choose � = 10�2 and, for the normalised frequency range 0 <
d/k [ 0.7 in our examples, we observe no significant improvement of the numerical solution by increasing the
number of plane wave orders further.

We first consider the case of plane wave incidence from above and apply the Galerkin procedure to the var-
iational problem by substituting the trial function vnh of Eq. (41) into Eq. (40) to derive the following linear
system:
Mvv Mvr Mvt

Mrv d1I 0

Mtv 0 d1I

264
375 vn

rn

tn

264
375 ¼ fvn

frn

0

264
375; ð43Þ
where the unknown vectors vn, rn and tn contain, respectively, the FEM basis coefficients, the plane wave coef-
ficients rmn and tmn; I is the identity matrix of order (2N + 1), 0 is the null matrix or the null vector of order
(2N + 1) and the other submatrices of the system (43) are defined as
ðMvvÞms ¼
Z

X
�pðr/sÞ � ðr/�mÞ þ k2q/s/

�
m

� �
dx dy; m; s ¼ 1; . . . ;Nh;

ðMvrÞms ¼ ip0vs�N�1

Z x0þd1=2

x0�d1=2

was�N�1
ðxÞ/�mðx; y0Þ dx; m ¼ 1; . . . ;N h; s ¼ 1; . . . ; ð2N þ 1Þ;

ðMvtÞms ¼ �ip00v
0
s�N�1

Z x0
0
þd1=2

x0
0
�d1=2

wð0Þas�N�1
ðxÞ/�mðx; y 00Þ dx; m ¼ 1; . . . ;N h; s ¼ 1; . . . ; ð2N þ 1Þ;

ðMrvÞms ¼ �
Z x0þd1=2

x0�d1=2

/sðx; y0Þw�am�N�1
ðxÞ dx; m ¼ 1; . . . ; ð2N þ 1Þ; s ¼ 1; . . . ;Nh;

ðMtvÞms ¼ �
Z x0

0
þd1=2

x0
0
�d1=2

/sðx; y00Þw
ð0Þ�
am�N�1

ðxÞ dx; m ¼ 1; . . . ; ð2N þ 1Þ; s ¼ 1; . . . ;Nh:

ð44Þ
The coefficients of the source terms are
ðfvnÞm ¼ ip0vn

Z x0þd1=2

x0�d1=2

wnðxÞ/�mðx; y0Þ dx; m ¼ 1; . . . ;Nh;

ðfrnÞm ¼ �d1dðm�N�1Þ;ðn�N�1Þ; m ¼ 1; . . . ; ð2N þ 1Þ:
ð45Þ
For plane wave incidence on the lower grating interface, the right-hand side of Eq. (43) becomes ½f 0vn; 0; f
0
rn�

T

with
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ðf 0vnÞm ¼ ip00vn

Z x0
0
þd1=2

x0
0
�d1=2

expðianðx� x00ÞÞ/
�
mðx; y00Þ dx; m ¼ 1; . . . ;Nh;

ðf 0rnÞm ¼ �d1dðm�N�1Þ;ðn�N�1Þ; m ¼ 1; . . . ; ð2N þ 1Þ:
ð46Þ
4.1. Solution of the finite element system

The submatrix Mvv is a classic finite element matrix and has a sparse band matrix profile. However, since
the exponential functions wm(x) and wð0Þm ðxÞ vary along the boundaries P and P 0, the columns of Mvr and Mvt,
and the rows of Mrv and Mtv have a relatively large number of nonzero elements because coefficients for the
degrees of freedom corresponding to FEM nodes located on P or P 0, in general, are nonzero. The coefficient
matrix of the system (43) is usually referred to as a bordered matrix because of the shape of its nonzero ele-
ments; its bandwidth can be quite large. This is an unfavourable situation since most existing finite element
tools are optimised for sparse and relatively small bandwidth matrices. Accordingly, it was necessary to derive
a method that would allow us to efficiently solve Eq. (43) using algorithms for standard finite element sparse
matrices or for low dimension dense matrices.

Expressing vn in term of rn and tn, we have
vn ¼M�1
vv fvn �M�1

vv Mvrrn �M�1
vv Mvttn; ð47Þ
and substituting this into Eq. (43) leads to the following low dimension and dense matrix system
M̂rr M̂rt

M̂tr M̂tt

" #
rn

tn

� �
¼ f̂rn

f̂ tn

" #
ð48Þ
in which the submatrices and the vectors of Eq. (48) are given by
M̂rr ¼ d1I�MrvM
�1
vv Mvr;

M̂rt ¼ �MrvM
�1
vv Mvt;

M̂tt ¼ d1I�MtvM
�1
vv Mvt;

M̂tr ¼ �MtvM
�1
vv Mvr;

ð49Þ
and
f̂rn ¼ frn �MrvM
�1
vv fvn;

f̂ tn ¼ �MtvM
�1
vv fvn:

ð50Þ
Similarly, for the case of incidence from below by an upward propagating wave we have
M̂rr M̂rt

M̂tr M̂tt

" #
t0n

r0n

� �
¼

f̂ 0tn

f̂ 0rn

" #
; ð51Þ
where
f̂ 0tn ¼ f 0tn �MrvM
�1
vv f 0vn;

f̂ 0rn ¼ �MtvM
�1
vv f 0vn:

ð52Þ
In Refs. [13,17] we developed a computationally efficient approach for constructing the solution of Eqs. (48)
and (51) in order to determine the unknowns rn and tn from which the field vn can be subsequently recon-
structed using Eq. (47). In particular, for Eqs. (47), (49), (50) and (52), the matrix products involving M�1

vv

are computed using an LU factorisation of the FEM matrix Mvv. During the LU decomposition, coefficients
which are zero in the original coefficient matrix of Eq. (43) may become nonzero (fill-in). The amount of fill-in
can be reduced by using an appropriate numbering of the FEM mesh nodes.

Finally, we observe that, for a lossless material, the coefficients of the finite element matrix Mvv, as given by
Eq. (44)1, are real numbers when the Bloch factor eia0d1 in Eq. (34) is equal to 1 (periodic boundary condition)
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or �1 (anti-periodic boundary condition) and, accordingly, we can avoid complex number computation by
solving separately for the real part and imaginary part. Even for the general case, a coefficient (Mvv)ms can
have non zero imaginary part only if either the basis functions /s or /m is associated with a node on the left
or right boundaries because, as we have seen in the first paragraph of this section, only nodal functions based
on these boundaries are subjected to the quasi-periodic condition; typically most of the elements of Mvv will be
real numbers and computation performance can be significant improved by taking advantage of that fact to
reduce complex number operations; this can be achieved by reordering the basis functions so that we can
assume that the last rows and columns Mvv correspond to the complex valued basis functions; we will then
have a situation similar to the one in Eq. (43): a large central submatrix has a structure (real coefficients) that
we wish to use but it is bordered by submatrices which do not enjoy the same structure. To solve this new
bordered system, we can easily adapt the approach we develop for the system (43).

4.2. Computation of the scattering matrices

Let eR, eT, eR0 and eT0 denote the matrices whose columns are respectively the vectors rn, tn, r0n, t0n, for
n = �N, . . . ,N.

From (48) and (51), the scattering matrices eR, eT, eR0 and eT0 satisfy the following equation
M̂rr M̂rt

M̂tr M̂tt

" # eR eT0eT eR0
" #

¼ M̂rr � 2d1I M̂rt

M̂tr M̂tt � 2d1I

" #
: ð53Þ
In particular, the right-hand side matrix can be obtained easily from the system matrix and thus computation
time can be saved by avoiding the direct calculation of the right-hand side vectors. The matrix system (53) can
be solved using, for instance, the LAPACK library [30] which can handle systems of linear equations with mul-
tiple right hand sides.

Now, if we scale the plane wave coefficients of the incident, reflected and transmitted fields in the same way
as in Eq. (13), the corresponding scattering matrices R, T, R 0, T 0 are given by the similarity transformation
R T0

T R0

� �
¼ v1=2 0

0 v01=2

" # eR eT 0eT eR0
" #

v�1=2 0

0 v0�1=2

" #
; ð54Þ
where v and v 0 are the following diagonal matrices:
v ¼ diag ½vm� and v0 ¼ diag ½v0m�: ð55Þ

This normalisation is used to simplify the calculation of energy quantities. For example, if n;m 2 Z correspond
to propagating diffracted orders, then the fraction of energy (diffraction efficiency) reflected into the mth order
by an incident downward propagating plane wave of order n is given by jeRmnj2vm=vn in term of the unscaled
matrix, or simply |Rmn|2 when using the normalised matrix.

5. Numerical examples

5.1. Convergence of the method

We turn now to discuss our investigation of the convergence properties of the numerical method and con-
sider a hexagonal lattice of circular inclusions. The parameters of the problem are: period of the grating d1 = d

(d being the lattice constant), background refractive index nb = 3, cylinder refractive index nc = 1, radius of the
cylinders a/d = 0.3, free space wavelength k/d = 2, and transverse Bloch wave vector a0 = p/(6d) (see Eq. (6)).

Two possible choices of grating layers, with period d1 = d, are shown in Figs. 2(b) and (c). We use the layer
of Fig. 2(b) for the results presented in this section. We will give more details about Fig. 2 later in Section 5.3.

Let Mh be a finite element triangulation of a unit cell, with the parameter h referring to the maximum diam-
eter of the triangles in Mh. Let lh denote an approximation to the eigenvalue l computed using an FEM
of order p on the mesh Mh. Then, if the eigenfunction associated with the eigenvalue l is sufficiently regular
and under additional conditions on the quality of the FEM meshes, standard convergence results for elliptic
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Fig. 2. Hexagonal lattice photonic crystals: (a) The first Brillouin zone and two of its replicates in the reciprocal space. (b) and (c) show a
grating layer (area between the dotted lines) and a unit cell (parallelogram) when the wave vector k0 is parallel to the C–M direction. (d)
presents a grating layer and a unit cell when k0 is parallel to C–K. The coordinates of the vectors are given in Table 3.
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eigenvalue problems [12] predict that lh converges to l with a convergence rate of 2p, i.e., |lh � l| 6 C h2p

where the coefficient C does not depend on h.
To evaluate the convergence rate of our approximation we use an FEM of order p = 2 and generate a

sequence of five successively refined meshes Mh0
, Mh1

, Mh2
, Mh3

and Mh4
with hj = h0/2j, for j = 1,2,3,4, using

the commonly available software ‘‘Gmsh’’ [22]. Some details about the computation with these meshes are
given in Table 1. The initial coarse mesh Mh0

is shown in Fig. 3(a).
For both TE and TM polarisations, we computed on each mesh Mhj those eigenvalues li

hj
such that

1=5 < jli
hj
j < 5. The number of these eigenvalues is 6 for either polarisation. Since the exact solution is not

known, we choose to approximate the error by jli
hj
� lij � jli

hj
� li

hjþ1
j for j = 0,1,2,3. In Fig. 3 we plot

eðjÞ ¼ maxifjli
hj
� li

hjþ1
jg as a function of j 2 {0,1,2,3}. In Fig. 3(b) we use standard FEM meshes with rec-

tilinear triangles and discover that the convergence rate is 2, lower than the theoretical convergence order
2p = 4. This suboptimal convergence can be attributed directly to the approximation of the circular cylinder
interface by a polygon. Indeed, when we use curved triangles (isoparametric FEM triangles) to approximate
the curved interface by piecewise quadratic polynomials, we obtain the optimal convergence order 2p = 4
shown in Fig. 3(c). Accordingly, we will adopt the isoparametric FEM for our remaining numerical examples.

Before concluding our discussion of convergence, we consider briefly the effect of plane wave parameters on
our calculations. This is of particular importance in device applications in which the regular photonic crystal
lattice is perturbed by the introduction of defects to form waveguides, resonant cavities, couplers and the like.
All such applications require the device to be operated in a band gap and, for example, the removal of a entire
Table 1
Computational timings for various FEM meshes Mhj : number of triangles (NT), number of nodes (NN, vertices and edge midpoints),
plane wave truncation parameter (N) and computation time on a Pentium 4 (2.8 GHz, 2.0 GB) Computer (CPU, for isoparametric FEM)

NT NN N CPU (s)

Mh0
220 481 6 1

Mh1
966 2021 11 1.5

Mh2
3722 7621 20 7.75

Mh3
14,792 29,945 20 70.2

Mh4
59,948 120,625 20 1025
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Fig. 3. Convergence of the quadratic FEM. (a) Initial FEM mesh (rectilinear triangles) of the unit cell. The curves in (b) and (c) represent
the quantities eðjÞ ¼ maxifjlhj

� lhjþ1
jg as a function of the FEM mesh subdivision j 2 {0,1,2,3}. The continuous and dashed lines

indicate, respectively, the E-parallel (TM) and H-parallel (TE) modes. The results in (b) are obtained using rectilinear FEM triangles and
the rate of convergence is 2. In (c) isoparametric FEM (curved triangles at the cylinder interface) is used and the optimal convergence rate
of 4 is achieved.
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line of scatterers to form a waveguide introduces a band of defect states that enables the channel to guide the
light. This is exemplified in Fig. 4(b) which displays the dispersion curve for the defect mode corresponding to
a waveguide introduced into a square symmetric photonic crystal by removing a single row of cylinders. The
numerical computation of the photonic crystal waveguide modes is important in many applications and both
two- and three-dimensional models have been proposed [24,29].

The modelling of a device using the Bloch mode transfer matrix method requires that the defect is embed-
ded within a supercell whose size is chosen to be sufficiently large so that there is negligible crosstalk between
adjacent supercells, a consequence of the fields decaying in the cladding due to operation of the device in a
band gap. For the method to be practically useful, any calculations should be independent of the Bloch factor
a0, with the proviso that we operate inside a band gap and that there is effectively no crosstalk between the
supercells. This we exemplify with a device referred to as the folded directional coupler (FDC) that we have
studied previously [42]. The FDC (Fig. 5(a)) is a novel high-Q notch rejection filter that exploits the mode cou-
pling properties of a directional coupler and the sharp resonances of a Fabry–Perot (FP) resonator. The struc-
ture is made ultra-compact by folding the light path, needed for mode coupling, using a FP interferometer
geometry with the aid of cavity mirrors composed of photonic crystal.

The structure that we consider is operated in E-polarised light and comprises a square lattice with cylinders
of normalised radius a/d = 0.3 and refractive index m = 3. Fig. 5(b) depicts the field pattern for a wavelength of
k/d = 3.3, while Fig. 5(c) displays a cross-section of the field intensity at y = 10 and illustrates the exponential
decay of the field in the crystal, with these calculations being performed with a0 = 0. Table 2(a) displays the
variation of the transmittance of the FDC for various values of a0 and we see immediately that this is almost
independent of a0, with the small variation explicable by the small cross-coupling that occurs at the supercell
boundaries. A further example of the independence of the calculations on a0 is shown in Table 2(b) which
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Fig. 4. (a) Band diagram of a perfect photonic crystal obtained using the grating supercell of length D = d1 = 21d shown in (c). (b) Band
diagram of a photonic crystal with a line defect; the band is obtained using the supercell of length D = 21d shown in (d). The bands in (a)
and (b) are computed along the wave vector line k0 = (a0,b0) = (0,b0) for the E-parallel polarisation.
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Fig. 5. Folded directional coupler: (a) geometry; (b) two-dimensional plot of |Ez| at the wavelength k/d = 3.3; (c) the continuous line
represents the cross-section of |Ez| at the level y = 10 (logarithmic scale); the dashed line represents the function defined by f(x) = Me�cx if
x P 0 and f(x) = Me�c|x + 2d| if x 6 � 2d where c = �log|l| = 0.675973/d is the lowest attenuation constant of the evanescent modes in the
bulk photonic crystal (see Figs. 4(a) and (c)) and M is the maximum value of |Ez|. The supercell used for the calculations has dimension
d1 = 21d.

Table 2
The choice of a0 has a negligible effect on the computed results: (a) transmittance T; (b) propagation constant b; (grating supercell of length
D = d1 = 21d, wavelength: k/d = 3.3)

Da0/p T

N = 20 N = 30

(a)
0. 0.8207106 0.8208297
0.2 0.8207106 0.8208297
0.4 0.8207107 0.8208297
0.6 0.8207107 0.8208296
0.8 0.8207105 0.8208293
1. 0.82071 0.8208287

Da0/p b

N = 20 N = 30

(b)
0. 0.8111816 0.8110291
0.2 0.8111817 0.8110291
0.4 0.8111821 0.811029
0.6 0.8111829 0.811029
0.8 0.8111841 0.8110291
1. 0.8111859 0.8110295
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shows the propagation constant b for a single waveguide (i.e., the entry or exit guide of the FDC) as a function
of a0 for a wavelength k/d = 3.3.

5.2. Properties of the Bloch modes: the eigenvalue distribution

We now consider the distribution of eigenvalues in the complex plane for three PCs, respectively, having
square symmetry, hexagonal symmetry and no defined lattice symmetry. The results are presented in
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Fig. 6, for which we show only those eigenvalues in the range 10�6 < |l| < 106. In order to suitably represent
eigenvalues over such a large dynamic range, their magnitude is scaled radially according to r = |l|0.1, with the
eigenvalues corresponding to propagating states lying on the unit circle. The parameters common to the three
problems are as follows: grating period d1 = d, background refractive index nb = 3, cylinder refractive index
nc = 1, cylinder radius a/d = 0.3, free space wavelength k/d = 1 (TM polarisation), a0 = p/(4d).

There are a number of interesting features evident in Fig. 6, one of which is common to all three cases,
namely that if l is an eigenvalue then 1/l* is also an eigenvalue. From this it follows that there is an even
number of eigenvalues on the radial lines corresponding to |l| 6¼ 1. The proof of this follows from the similar-
ity transformation TH ¼ IpwT�1I�1

pw (derived from Eq. (28)) which shows that the eigenvalues l and 1/l*

must be paired.
For the cases (a) and (b) of Fig. 6, the eigenvalue distributions, respectively, demonstrate axes of symmetry

given by the radial directions h = 0 and h = �a0d/2. This property can be explained by the fact that the lattices
and their corresponding cylinder inclusions are invariant under the transformation (x,y)! (x,�y). It is then
easy to see that if v(x,y) is a Bloch mode associated with a wave vector k0 = (kx,ky) = (a0,b0),
v̂ðx; yÞ ¼ vðx;�yÞ is also a Bloch mode associated with the Bloch vector k̂0 ¼ ða0;�b0Þ.

For the square lattice we have e2 = (0, d) and so the phase factors corresponding to k0 and k̂0 are, respec-
tively, l ¼ e�ik0�e2 ¼ e�ib0d and l̂ ¼ e�ik̂0�e2 ¼ eib0d . Thus, for the square symmetric photonic crystal the eigen-
values l and 1/l are paired and the line h = 0 is an axis of symmetry for the eigenvalues in the complex plane.

For the hexagonal lattice we have e2 ¼ dð1;
ffiffiffi
3
p
Þ=2 and so the phase factors corresponding to k0 and k̂0 are,

respectively, l ¼ e�ik0�e2 ¼ e�iða0þb0

ffiffi
3
p
Þd=2 and
Fig. 6.
hexago
l̂ ¼ e�ik̂0�e2 ¼ e�iða0�b0

ffiffi
3
p
Þd=2 ¼ e�ia0deiða0þb0

ffiffi
3
p
Þd=2 ¼ e�ia0d

l
: ð56Þ
Thus, for the hexagonal lattice the eigenvalues are paired as leia0d=2 and 1=ðleia0d=2Þ and the line h = �a0d/2 is
an axis of symmetry for the eigenvalues.

We note that for the case of a0 = 0 the pairing of the eigenvalues l and 1/l also holds for arbitrary non-
symmetric photonic crystals because of the symplectic nature of the transfer matrix (26), from which the pair-
ing follows from the similarity transformation TT ¼ QpwT�1Q�1

pw.
These symmetry properties which are exhibited by the eigenvalue distribution can be used to check the

validity and accuracy of the numerical method. The results computed by our FEM satisfy these constraints
well. For the eigenvalues appearing in Fig. 6 the pairing l and 1/l* is verified with a relative error less than
10�4% while the deviation from the axial symmetry of Figs. 6(a) and (b) is also less than 10�4%.

5.3. Band structure of a hexagonal lattice of dielectric cylinders

We next consider the calculation of a band diagram for a hexagonal lattice PC, solving for the dispersion
relation x = x(k0) where the wave vector k0 traverses the boundary C–K–M of the irreducible part of the first
Brillouin zone shown in Fig. 2(a). Because of the lattice symmetry, the segment K–M can be replaced by K–M 0

and thus the number of directions to investigate can be reduced to two, namely, C–M and C–K–M 0. Since k0 is
not a fully independent variable in our numerical algorithm, some care must be taken to ensure that the com-
puted wave vectors belong to a given direction of the reciprocal space.
(a) (b) (c)

Eigenvalue distribution (E-parallel polarisation) over the complex number plane. (a) Symmetric square lattice PC; (b) symmetric
nal lattice PC; (c) nonsymmetric square lattice PC (cylinder with quarter-disk section). The inset shows the unit cell of each case.
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To obtain the band diagram we use the fact that for any given values of a0 = k0x, the wavevectors computed
by our method lie on a line perpendicular to the grating layer [6,7]. Wave vectors k0 parallel to the C–M direc-
tion correspond to a normal incidence problem, i.e., a0 = (k0 Æ e1)/ie1i = 0, on the grating layers shown in Figs.
2(b) and (c). Wave vectors k0 parallel to the C–K direction correspond to a normal incidence problem, i.e.,
a0 = (k0 Æ e1)/ie1i = 0, on the grating layer shown in Fig. 2(d). In Table 3, we present the lattice vectors e1

and e2 of Fig. 2 and other parameters used in the computation the band diagram. More details about the pro-
cedure can be found in Ref. [7].

The structure of Fig. 2(b) is straightforward in that the rows of adjacent gratings do not interpenetrate.
The grating interior has exactly one row of cylinders and the unit cell has a simple geometry, and so it is
relatively easy to generate its finite element mesh. However, when layers interpenetrate, such as in the exam-
ple of Fig. 2(c), corresponding to a normalised cylinder radius a=d >

ffiffiffi
3
p

=4 ¼ 0:433013, we generate the
finite element mesh using the unit cell depicted in Fig. 2(c). This observation also applies to the case of
C–K incidence, although interpenetration occurs at a far lower normalised radii, a/d > 0.25. In passing,
we observe that the interpenetration of cylinder rows can cause severe difficulties for the multipole method,
a problem which is related to the validity of the Rayleigh approximation in diffraction grating theory, and
which is discussed in Ref. [7]. In contrast, the FEM approach outlined here has no difficulties in handling
such situations.

We now consider two numerical examples: the first a comparison with an FEM based study by Axmann
and Kuchment [2], and secondly a comparison with a plane wave calculation for a PC with a high filling frac-
tion taken from Joannopoulos et al. [26].

In the Axmann and Kuchment [2] approach, the Bloch vector is set and the frequency becomes the
unknown eigenvalue, with the problem being discretised using a linear FEM. This process leads to a general-
ised eigenvalue problem with a large matrix because it involves directly the values of the unknown fields over
the entire unit cell. However this eigenproblem had been efficiently solved using a subspace iteration method
that computes only a small number of the physically most relevant (i.e., lowest) eigenvalues. The example con-
sidered by Axmann and Kuchment comprised a hexagonal array of dense cylinders of dielectric constant
e = 14 and filling fraction 0.431 (i.e., normalised radius a/d = 0.34469) embedded in a free space background.
The band diagrams in Fig. 7(a) are very similar to the those of Fig. 2 of Ref. [2].
Table 3
Band diagram parameter: a0 = k0 Æ e1 and arg(l) = k0 Æ e2

Path k0 Range of s e1/d e2/d d1/d k0 Æ e1 Range of k0 Æ e2

C–K sð12;
ffiffi
3
p

2 Þ ½0; 4p
3d� ð32;�

ffiffi
3
p

2 Þ (1,0)
ffiffiffi
3
p

0 ½0; 2p
3 �

K–M ðs; 2p
d
ffiffi
3
p Þ ½0; 2p

3d� ð0;
ffiffiffi
3
p
Þ ð12;

ffiffi
3
p

2 Þ
ffiffiffi
3
p

2p ½p; 4p
3 �

M–C (0, s) ½0; 2p
d
ffiffi
3
p � (1,0) ð12;

ffiffi
3
p

2 Þ 1 0 [0,p]

K–M 0 sð12;
ffiffi
3
p

2 Þ ½4p
3d;

2p
d � ð32;�

ffiffi
3
p

2 Þ (1,0)
ffiffiffi
3
p

0 ½2p
3 ; p�
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Fig. 7. Band diagram of a hexagonal lattice of cylinders; the continuous and dashed lines indicate, respectively, the E-parallel and
H-parallel modes. (a) Lattice of cylinder rods of dielectric constant e = 14 and filling fraction 0.431; the rods are embedded in a free space
background. (b) Lattice of cylinder holes of normalised radius a/d = 0.48 in a background with dielectric constant e = 13.
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Table 4 shows the lowest band gaps and there is again good agreement between our isoparametric qua-
dratic finite element technique and the linear FEM presented in Ref. [2]. To obtain results that are stable
to five significant figures, it is necessary to work with a fine mesh. For the C–M calculations, the unit cell mesh
has 9182 triangles and 18,645 points with plane wave orders truncated to lie in the range �22 to 22, while for
the C–K–M 0 calculations, we used an FEM mesh with 9028 triangles and 18,441 points and plane wave orders
ranging from �26 to 26. Note, however, that the band diagrams in Fig. 7(a) do not require such a high level of
refinement and the curves can be properly obtained using less refined discretisation.

From the results in Fig. 7(a) and Table 4, it appears that the band gaps for the TE and TM polarizations do
not overlap. However, Joannopoulos et al. [26] show that, for a hexagonal array of cylinder holes in a high
index background, it is possible to achieve a complete band gap for all polarizations if the cylinder radius
is large enough. In particular, they considered the case of cylinder holes of normalised radius a/d = 0.48 in
a background with dielectric constant e = 13. Again the band diagram in Fig. 7(b) shows a good agreement
between our FEM and the plane wave method used for the diagram in Ref. [26, p. 65]. The plane wave orders
used to obtain the dispersion curves in Fig. 7(b) range from �19 to 19 and from �23 to 23, respectively, for the
C–M and C–K–M 0 directions. The unit cells are represented by FEM meshes with about 4000 triangles and
8400 points.

5.4. Band structure of a hexagonal lattice of perfectly conducting metallic cylinders

We continue on the validation of the method by considering the interesting case of a PC comprising per-
fectly conducting cylinders which is an excellent approximation for metals in the low frequency limit (e..g., the
microwave regime). This problem exhibits an important difference from the dielectric cylinder formulation,
namely that the interiors of the perfectly conductor cylinders do not belong to the problem domain. Thus
complications occur when the grating interfaces P and P 0 intersect these cylinders (as in Figs. 2(c) and (d)).

In this case, continuity conditions between the plane wave expansion and the field inside the grating have to
be enforced on isolated segments of P and P 0. In particular, the second and third equations in (40) are no
longer valid because the line integrals on the top and bottom boundaries of the unit cell cover segments of
length L < d1, and thus the orthogonality of the plane wave functions {wm(x)} cannot be applied. This issue
can be addressed by replacing d1 by L in Eqs. (11) and (40). However, the corresponding plane wave repre-
sentations of the fields are not d1-quasi-periodic. Fortunately the d1-quasi-periodicity does not have to be
directly imposed on the plane wave expansions of the field over the segments of P and P 0 intersecting the grat-
ing since these segments are not connected. Accordingly, we need only to enforce the d1-quasi-periodicity on
the field inside the grating.

When the cylinder radius is sufficiently small, we may use either of the two unit cell geometries in Figs. 2(b)
and (c). Numerical tests show excellent agreement between the band structures obtained by either method. In
Fig. 8, we show the band diagram for a hexagonal lattice of perfectly conducting cylindrical inclusions of
radius a/d = 0.34 in a background medium of refractive index nb = 1. A particular feature of the lattice of
metallic cylinders is the existence for E-parallel polarisation of a wide band gap from the zero frequency
to d/k = 1.211. The band diagram we obtained is essentially identical to that in Fig. 12 of Ref. [33]. For
Table 4
Comparison of the band gaps (for the normalised frequency d/k in the range [0,0.5]) obtained using our method (FEM 1) with the results
in Table I of [2] (FEM 2)

Band gap no. TM

FEM 1 FEM 2

1 [0.19644,0.25319] [0.19673,0.253637]
2 [0.34969,0.43569] [0.350039,0.436544]

Band gap no. TE

FEM 1 FEM 2

1 [0.28564,0.33844] [0.286089,0.339239]
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Fig. 8. Band diagram for the perfect metallic cylinder inclusion of radius a/d = 0.34 in a background medium of refractive index nb = 1.
The continuous and dashed lines indicate, respectively, the E-parallel and H-parallel modes.
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the calculation of the dispersion curves in Fig. 8, the plane wave orders are truncated to the ranges �14 to 14
and �17 to 17, respectively, for the C–M and C–K–M 0 directions. The unit cells are represented by FEM
meshes with about 2300 triangles and 4900 points.

5.5. Efficient coupling of light from a photonic crystal waveguide into free space

Our final example concerns the modelling of photonic crystal waveguides, constructed by removing a single
row of cylinders (referred to as a W1 defect waveguide) from an otherwise perfect photonic crystal. Here, we
concentrate on the particular question of designing a tapered neck that can be used to apodise, or efficiently
couple, light into and out of the waveguide. The aim here is to minimise the reflection that may arise if the
transition between the waveguide and free space is not sufficiently smooth.

The determination of an optimal shape for the taper among a set of general, arbitrary shapes can be a very
complex problem. Thus to simplify the modelling, the optimisation is typically performed amongst a limited,
but physically realistic, set of possible taper profiles. For instance the optimisation of the length and the width
of linear taper profiles have be studied in Refs. [36,40]. Here, in addition to the length and the width, as illus-
trated in Fig. 9, we introduce a third parameter n to allow the shape of the taper to be varied continuously as
Fig. 9.
(large
sequen
the sca
wðyÞ ¼ W base þ ðW � W baseÞ
y

Ld

 �n
for y 2 ½0; Ld�0; ð57Þ
where w(y) stands for the width of the taper at the position y, the integer L represents the number of grating
layers in the taper, Wbased and Wd denote, respectively, the width, defined from the centre of the inclusions, at
the lower and upper ends of the taper. For the waveguide of Fig. 9 that we consider, Wbase = 2. The positive
parameter n determines the taper shape: for n = 1 the taper is linear, for n > 1 it is concave as in Fig. 9, while
for n < 1 it is convex.
L d

d

W d

Wbase dd

D

d' d' d' d' d

Schematic illustration of the square lattice taper. Light is incident from at he fundamental mode of a photonic crystal waveguide
arrow) into free space via a taper of L layers and width W d (shaded rectangle). The photonic crystal is considered to consist of a
ce of gratings (horizontal dotted lines) with supercell period D. The solid curves correspond to Eq. (57) specifying the positions of
tterers.
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The square lattice photonic crystal structure illustrated in Fig. 9 comprises three regions: the waveguide, the
taper region (shaded rectangle in Fig. 9) and free space, a semi-infinite homogeneous medium having the same
refractive index as the photonic crystal background material.

Each constituent layer of the taper or the characteristic layer of the waveguide is treated as a diffraction
grating having a supercell period of length D = 21d which we operate with a periodic boundary condition
(a0 = 0). Inside each of the grating layers that comprise the taper, the cylinders on the taper wall are
placed so that the centre-to-centre separation is given by Eq. (57). As indicated in Fig. 9, the distance
between the two inclusions closest to the taper opening is maintained at d, whereas subsequent inclusions
are separated by d 0, such that d 0 is as close as possible to d, consistent with the supercell period D; d 0

generally differs in each of the gratings. Near the taper opening, we choose to maintain a cylinder sepa-
ration of d, since it is important to maintain the integrity of the band gap that is responsible for confining
the light in the vicinity of the taper core. The problem we will consider is to determine the optimal taper
profile for efficient transmission from the fundamental mode of the photonic crystal waveguide into free
space. To perform the analysis we will need to compute the reflected field in the waveguide and the trans-
mitted field in free space for a sequence of taper profiles corresponding to incidence of the fundamental
waveguide mode. Within the waveguide, we represent the field in terms of a Bloch mode basis obtained
from the solution of the eigenvalue problem for the waveguide mode transfer matrix (23). The scattering
property of the taper is then characterised in terms of its reflection and transmission matrices. Details of
the algorithm are given in Appendix A.

We consider a rod-type photonic crystal in E-polarised light (i.e., TM polarisation), consisting of cylinders
of radius a = 0.25d, and refractive index nc = 3 arranged in a square array, in a background of refractive index
nb = 1. Each layer of the taper is represented by a finite element mesh of around 12,000 triangles and 25,000
points, with the plane wave expansion truncated to include orders ranging from �29 to 29. The bulk photonic
crystal has a band gap for normalised frequencies d/k 2 [0.287, 0.387], i.e., for wavelengths k lying between
2.582d and 3.487d. Within this gap, the W1 waveguide supports a mode with a cutoff at d/k = 0.302, i.e.,
k = 3.312d, so the relevant wavelength range for our study of coupling from the waveguide into free space
is k/d 2 [2.582, 3.312].

The transmittance of the fundamental mode over this wavelength region is shown in Fig. 10 for tapers of
total width W = 4, with length ranging from L = 4 to L = 8 and for various taper parameters n. The contour
plots of Fig. 10 have levels ranging from very high values of 99.5% down to values of 70% reflecting poor taper
performance. In general, waveguide tapers with 2 6 n 6 3 (horn-shaped tapers) are capable of delivering very
high transmittances. This is also evident in Fig. 10(b) which shows the transmission spectrum for the optimal
taper, and for a waveguide that is terminated abruptly (i.e., without any tapering). For tapers of this optimal
shape, the transmittance and wavelength coverage increase with taper length, with a length of six periods
delivering transmittances not significantly below those of longer tapers. Note that from Fig. 10 we see that
linear tapers (n = 1) can deliver good performance. However, to achieve this the taper has to be longer than
for a taper of optimal shape.

Also, in Fig. 10(c) we plot the group velocity. In the case of an infinite waveguide, we may calculate this
from vg = dx/db of from the ratio of the energy flux in the guide to the energy density in a layer [7]. For a
semi-infinite structure, such as a terminated waveguide, however, the group velocity can be computed only
with the second method, in which we must estimate the energy density by averaging over a number of layers
deep in the waveguide in order to avoid any truncation effects which manifest themselves in the form of eva-
nescent waveguide modes which are prominent near the interface. The dashed curve in Fig. 10(c) is the group
velocity in the optimal taper, with the energy density being averaged over layers 11 layers some 10 layers below
the start of the taper. Coinciding perfectly with this (although invisible on the graph) is the group velocity of
the infinite guide, computed according to vg = dx/db, with the perfect agreement of the two associated with
the optimal tapering. The solid curve in Fig. 10(c) is the group velocity for the untapered termination, and we
see that this differs markedly from the group velocity for the optimal structure. In both cases, however, we see
that the transmittance is qualitatively similar to the group velocity, with both vanishing at the cutoff wave-
length. However, the relationship between transmittance and group velocity is somewhat indirect, since trans-
mittance is primarily a function of impedance mismatch at an interface while the group velocity is essentially a
characteristic of the mode dispersion properties.
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Fig. 10. (a) Transmittance from a square lattice photonic crystal waveguide into free space for a taper of width W = 4 and lengths
L = 4,5, . . . ,9 layers. The contour levels shown correspond to transmittances of 0.995, 0.99, 0.98, 0.95, 0.90, 0.85, 0.80 and 0.70, decreasing
from the region centred on n = 2 outwards. (b) The continuous and dashed lines represent, respectively, the transmittance into free space
for a waveguide without a taper and for a waveguide having a taper with parameter L = 7, W = 4 and n = 3. (c) Group velocity vg/c (c is
the free space speed of light) of the two structures considered in (b).
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In many of the examples we have studied [16], involving different waveguide geometries (square and hex-
agonal lattices), waveguide length and polarisation, optimal transmittance tends to be delivered by tapers with
2 6 n 6 3. In Ref. [16], we have also studied hexagonal lattices, the modelling for which is significantly more
complex since the rows of closely packed cylinders can interpenetrate. It is here that the accuracy and flexi-
bility of the FEM implementation of the Bloch mode tools in handling challenging structures is particularly
useful.
6. Conclusion

In this paper we have proposed a numerical method, based on a scattering matrix formalism, for the anal-
ysis of two-dimensional photonic crystals. A finite element method for the computation of the scattering
matrices has been presented. Since the most computationally expensive step, associated with the factorisation
of FEM matrices, is not repeated, the construction of scattering matrices is carried out quite efficiently. The
mode structure can then be obtained from the scattering matrices by solving low dimension and numerically
stable eigenvalue problems. The scattering matrix formalism can also be used to analyse light propagation
through finite size structures. The method is accurate, computationally robust and can be applied to arbitrary
periodic materials, including lossy media. Extensions of the approach to 3D structure are possible and will be
pursued in the future.
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Appendix A. Efficient coupling from photonic crystal waveguides into free space

In this appendix, we give details of the algorithm used in Section 5.5 to compute the reflectance and trans-
mittance of a tapered PC waveguide (see Fig. 9).

To solve the propagation problem for a waveguide mode incident from below the taper, we need the Fresnel
reflection (R0taper) and transmission (T0taper) matrices of the taper. To obtain these matrices we first compute the
scattering matrices Rl; Tl; R0l; T0l for the taper layers l = 1,2, . . . ,L, enumerating these from bottom to top.
Note that from the up-down symmetry of the layers, we have R0l ¼ Rl and T0l ¼ Tl, and thus the calculation of
the scattering matrices can be halved. We will append the subscripted notation l1, l2 to the scattering matrices
variables to denote the reflection or transmission of a stack of layers ranging from the layer l1 to layer l2; for
instance R0taper ¼ R01;L and T0taper ¼ T01;L. We then form the reflection and transmission matrices for the taper
associated with incidence from below through backward recursion
R0l�1;L ¼ R0l�1 þ Tl�1R0l;LðI� Rl�1R0l;LÞ
�1

T0l�1; ð58Þ
T0l�1;L ¼ T0l;LðI� Rl�1R0l;LÞ

�1
T0l�1; ð59Þ
commencing with R0L;L ¼ R0L and T0L;L ¼ T0L.
In the waveguide region, the fields are expanded in the Bloch mode basis, obtained from the diagonali-

sation of the waveguide transfer matrix (23). If a field of upward propagating modes (designated by a
vector of Bloch mode coefficients c+) is incident on the interface between the waveguide and the taper,
it will generate a reflected field of downward propagating modes (c�). Thus, at the lower interface of
the taper, the field is expressed in terms of a plane wave expansion (13) with upward and downward com-
ponents (g±) given by
g�

gþ

� �
¼

F�

Fþ

� �
c� þ

F0�

F0þ

" #
cþ ¼

F� F0�

Fþ F0þ

" #
c�

cþ

� �
: ð60Þ
The interaction of the plane wave fields g± and the field t transmitted into free space is characterised by the
taper reflection and transmission matrices defined by
g� ¼ R0tapergþ; t ¼ T0tapergþ: ð61Þ
Solving Eqs. (60) and (61), we arrive at expressions for the reflection (Rgf) and transmission (Tgf) matrices of
the ‘‘guide-taper-free space’’ system, defined by
c� ¼ Rgfcþ; t ¼ Tgf cþ: ð62Þ

We thus derive
Rgf ¼ F�ð Þ�1
I� R0taperRg

 ��1

R0taper � R0g

 �
F0þ; ð63Þ

Tgf ¼ T0taper I� RgR0taper

 ��1

I� RgR0g

 �
F0þ: ð64Þ
The quantities Rg = F+(F�)�1 and R0g ¼ F0�ðF0þÞ
�1 that appear in each of Eqs. (63) and (64) are the plane wave

reflection matrices of semi-infinite photonic crystals, respectively, corresponding to incidence from above and
below [7,10].

For a specified incident modal field c+, the reflected modal field c� and the transmitted plane wave field t

may then be computed using Eq. (62). If the plane wave and waveguide basis are normalised so that each
mode carries unit energy, we can express the energy conservation of the system as follows
X

m2Xg

jcð�Þm j
2 ¼

X
m2Xg

jcðþÞm j
2 þ

X
p2Xf

jtpj2; ð65Þ
provided that the incident waveguide field contains only propagating modal terms [10]. In Eq. (65), Xm

and Xf, respectively, denote the set of propagating waveguide modes and the set of propagating plane
waves.
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